01矩阵中最大长方形,采取分层累积和求解直方图中最大矩形方法(stack方法)
而01矩阵中的最大正方形,采取动态规划策略。
dp[i][j]表示以(i,j)为正方形右下角的最大正方形边长
画图可知:
- 当(i,j)=1时候 dp[i][j]=min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])+1
- 当(i,j)=1时候 dp[i][j]=0
int dp[1000][1000];//dp[i][j]表示以(i,j)为右下角的最大正方形边长
//dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1
int solve(vector<vector<char> >& matrix) {
// write code here
int max=0;
for(int i=0;i<matrix.size();i++)
{
if(matrix[i][0]=='0')
dp[i][0]=0;
else
{
dp[i][0]=1;
max=1;
}
}
for(int i=0;i<matrix[0].size();i++)
{
if(matrix[0][i]=='0')
dp[0][i]=0;
else
{
dp[0][i]=1;
max=1;
}
}
for(int i=1;i<matrix.size();i++)
for(int j=1;j<matrix[0].size();j++)
{
if(matrix[i][j]=='0')
dp[i][j]=0;
else
{
dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1]))+1;
if(dp[i][j]>max)
max=dp[i][j];
}
}
return max*max;
}